

Published on Web 12/11/2003

A Stable Radical-Substituted Radical Cation with Strongly Ferromagnetic Interaction: Nitronyl Nitroxide-Substituted 5,10-Diphenyl-5,10-dihydrophenazine Radical Cation

Shinsuke Hiraoka, Toshihiro Okamoto, Masatoshi Kozaki, Daisuke Shiomi, Kazunobu Sato, Takeji Takui, and Keiji Okada*

Departments of Chemistry and Materials Science, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

Received June 19, 2003; E-mail: okadak@sci.osaka-cu.ac.jp

Recently, the magnetic properties of organic compounds have attracted a great deal of attention. Various approaches toward organic magnetic materials have been taken, both theoretically and experimentally.¹ Of these, an approach with a radical-substituted radical ion as a spin building block is particularly interesting. Yamaguchi and co-workers theoretically explored organic ferroand ferrimagnets with various patterns of radical-substituted donoracceptor charge transfer (CT) complexes.² Although the related experimental studies have been examined using aniline-,³ ferrocene-,⁴ and TTF-frameworks^{5,6} as basic structures of CT-complexes, paramagnetic behavior has been observed in most cases and the expected ferro- or ferrimagnetic properties have not been observed. In general, spins on donors and acceptors in usual CT-complexes have large intermolecular antiferromagnetic interactions ranging between -100 and -1000 K.⁷ To realize the expected properties, a comparably large intramolecular J (half the singlet-triplet energy gap $\Delta E_{\rm ST}$) between the radical and radical ion moieties^{3a} should therefore be essential. In this context, the thianthrene-based radical cations recently reported by Sugawara and co-workers seem to be attractive, although the J values of these spectroscopically detected species have not been determined because of their instability.8 The development of a molecular system with isolable stability and a large J is extremely important in the construction of molecular magnets. Dihydrophenazines are superior electron donors,⁹ giving highly stable radical cations that have large spin densities on the nitrogen and the C2 carbon atoms.¹⁰ We report the synthesis, structure, and magnetic properties of a nitronyl nitroxide-substituted 5,10-diphenyl-5,10-dihydrophenazine radical cation (1^+) .

The synthesis of 1^+ is outlined in Scheme 1. Cyclic bis-(hydroxylamine) **2** was synthesized by the condensation of dimethyl acetal **3** with 2,3-bis(hydroxylamino)-2,3-dimethylbutane in the presence of a catalytic amount of pyridinium tosylate in dry methanol. The treatment of **2** with silver(I) oxide in methylene chloride gave the neutral radical **1**. The oxidation of **1** to 1^+ was achieved using tris(4-bromophenyl)aminium perchlorate in dry acetonitrile in a glovebox. Concentration of the solvent and the addition of dry ether gave fine precipitates of the salt of $1^+ \cdot \text{ClO}_4^-$. Recrystallization of the crude salt from the methylene chloride toluene mixture gave dark-red crystals of $1^+ \cdot \text{ClO}_4^- \cdot \text{CH}_2\text{Cl}_2$. The salt was stable under aerated conditions at room temperature.

X-ray crystal structure analyses were achieved for the neutral 1^{11} and the 1^+ salt.¹¹ Figure 1-I shows the molecular structure of 1^+ . The phenyl groups at 5 and 10 positions had large dihedral angles to the dihydrophenazine plane in both 1 and 1^+ (A/C and C/E in Figure 1-I). The dihedral angle D/F was a little smaller in cation 1^+ . The bond lengths, **a**, **a'**, **c**, **c'** were shortened for 1^+ , whereas those of **b**, **b'** were elongated. These changes in bond lengths are in qualitative accord with the expectations from the

Scheme 1^a

^{*a*} Reaction conditions: (a) 2,3-bis(dihydroxylamino)-2,3-dimethylbutane (1.6 equiv) in the presence of pyridinium tosylate (0.3 equiv) in dry methanol; (b) silver(I) oxide (5 equiv) in methylene chloride; (c) tri(4-bromophenyl)aminium perchlorate (1 equiv) in dry acetonitrile.

Figure 1. Molecular structure (I), a dimer structure in the crystal packing (IIa), and a schematic diagram of magnetic interaction (IIb) for 1⁺. (I) Drawn at 50% ellipsoids level; hydrogen atoms, the counteranion, and the solvent are eliminated for clarity. Selected bond lengths (Å) and dihedral angles (deg) for 1⁺·ClO₄-·CH₂Cl₂: **a**, **a'**: 1.386(2), 1.380(2), **b**, **b'**: 1.414(3), 1.411(3), **c**, **c'**: 1.374(2), 1.383(2), **d**: 1.450(3), **e**, **e'**: 1.280(2), 1.279(2), A/C, C/E: 88.70, 102.26, D/F (F:-N=C-N- plane): 20.83. Selected bond lengths (Å) and dihedral angles (deg) for the neutral 1: **a**, **a'**: 1.407(4), 1.409 (4), **b**, **b'**: 1.408(5), 1.403(5), **c**, **c'**: 1.395(4), 1.410(4), **d**: 1.456(4), **e**, **e'**: 1.286(3), 1.279(3), A/C, C/E: 84.65, 85.52, D/F: 25.34. (IIa) The distance of C7-C8' contact: 3.566(3) Å. (IIb) The circles represent $S = \frac{1}{2}$ spins, NN: nitronyl nitroxide; DPAz: dihydrophenazine.

shape of the HOMO of the neutral dihydrophenazine structure; the elongated (shortened) bonds in 1^+ have a bonding (antibonding) relation in the HOMO of 5,10-dihydrophenazine. The N–O bond length (**e**, **e**') of 1^+ is similar to that of neutral 1 and longer than that of a nitrosonium nitroxide (1.23 Å).¹²

A short intermolecular contact was observed between the C7 atom and the C8' atom in adjacent 1^+ , both of which had large spin densities, forming a dimer structure (Figure 1-IIa).¹³ The distance of the contact (3.57 Å) is close to the van der Waals contact (3.54 Å).¹⁴ A schematic model of the magnetic interaction is expressed in Figure 1-IIb.

Figure 2-Ia,Ib shows the EPR spectrum for 1^+ in butyronitrile at 123 K and its simulation spectrum. The weak forbidden $|\Delta m_s|$ = 2 signal was observed at low temperatures. The intensity of the $|\Delta m_s| = 2$ signal linearly increased to the reciprocal temperature

Figure 2. EPR spectra (Ia,b) and temperature dependence of $\chi_p T$ of $1^+ \cdot ClO_4^- \cdot CH_2Cl_2$ (II). (Ia) Measured at 123 K in a frozen butyronitrile matrix with $\nu_0 = 9.251147$ GHz. (Ib) The simulation spectrum with parameters |D/hc| = 0.00725 cm⁻¹, |E/hc| = 0.0011 cm⁻¹, $g_{xx} = 2.0065$, $g_{yy} = 2.0020$, $g_{zz} = 2.0040$, $g_{av} = [(g_{xx}^2 + g_{yy}^2 + g_{zz}^2)/3]^{1/2} = 2.004$, (II) Measured for a powder sample under B = 0.1 T. The solid line represents the simulation curve with $J_1/k_B = 700$ K and $J_2/k_B = -18$ K.

(6–50 K). The linearity indicates either the quasi-degeneracy of singlet and triplet states, $\Delta E_{\rm ST}/k_{\rm B} \ll 6$ K, or a triplet ground state with a large S–T gap, $\Delta E_{\rm ST}/k_{\rm B} \gg 50$ K.

A much clearer insight was obtained by measuring the magnetic susceptibility of 1^+ (Figure 2-II). The $\chi_p T$ value at room temperature was 0.98 emu K mol⁻¹, which is close to that expected for S = 1state ($g_{av} = 2.004$). The value decreased with lowering temperature, which is ascribable to intermolecular magnetic interactions. The temperature dependence of $\chi_p T$ clearly demonstrates a large S-T gap of $\Delta E_{\rm ST}/k_{\rm B} \gg 300$ K. The spin Hamiltonian, $H = -2J_1(\mathbf{S}_{\rm NN1} \cdot$ $\mathbf{S}_{\text{DPhz1}} + \mathbf{S}_{\text{NN2}} \cdot \mathbf{S}_{\text{DPhz2}} - 2J_2 \mathbf{S}_{\text{DPhz1}} \cdot \mathbf{S}_{\text{DPhz2}}$, was used to analyze the $\chi_{\rm p}T$ value on the basis of the molecular packing in the crystal (Figure 1-IIb). The $\chi_p T$ values were reproduced using parameters of J_1/k_B \geq +700 K and $J_2/k_{\rm B} = -18 \pm 0.6$ K (solid line in Figure 2-II).¹⁵ The large J_1 is qualitatively understandable with the spin polarization mechanism via a large positive spin density of the C2-carbon of dihydrophenazine radical cation.^{10,16} The intramolecular ferromagnetic interaction J_1 falls within the same range as those of general CT-type intermolecular magnetic interactions.⁷

To obtain theoretical insights into the exchange interaction in this system, DFT calculations were performed using the Gaussian 98 program (UB3LYP/6-31G*).¹⁷ The geometry of the radical cation was taken from X-ray structure analysis. For the calculation of low-spin singlet state, the trial UHF wave function was generated by the broken symmetry (BS) approach.^{18–20} The triplet state had a lower energy than the BS-singlet state. The energy difference between the triplet and the BS-singlet state was 1.98 kcal/mol, which corresponds to $J/k_{\rm B} = +498$ K or $J/k_{\rm B} = +987$ K, depending on the estimation methodologies.^{19,20}

In sum, we have found that 1^+ is a stable triplet species with strong intramolecular ferromagnetic coupling. The following additional findings are noteworthy: (1) the corresponding 5,10dimethyl derived radical cation was unstable and slowly decomposed even under inert atmosphere. (2) The radical cation of the 2,7-bis[(nitronyl nitroxide)-2-yl]-substituted 1^+ -analogue had a clean EPR spectrum with a quartet pattern but was too unstable to isolate in pure form. The details will be published elsewhere. Preparation of charge-transfer complexes and related magnetic materials based on 1^+ is in progress.

Supporting Information Available: X-ray crystallographic files (CIF) and a list of spin-densities (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

B.; Veciana, J. In Magnetism: Molecules to Materials II; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: New York, 2001; pp 1–60. For ferrimagnetic approaches: (c) Hosokoshi, Y.; Katoh, K.; Nakazawa, Y.; Nakano, H.; Inoue, K. J. Am. Chem. Soc. 2001, 123, 7921–7922. (d) Shiomi, D.; Kanaya, T.; Sato, K.; Mito, M.; Takeda, K.; Takui, T. J. Am. Chem. Soc. 2001, 123, 11823–11824. For CT approaches: (e) Breslow, R. In Magnetic Properties of Organic Materials; Lahti, P. M., Ed; Marcel Dekker: New York, 1999; pp 27–60. (f) Sugimoto, T. In Molecular Magnetism; Itoh, K., Kinoshita, M., Eds; Kodansha or Gordon and Breach: Tokyo, 2000; pp 223–239.

- (2) (a) Yamaguchi, K.; Namimoto, H.; Fueno, T. Chem. Phys. Lett. 1990, 166, 408-414. (b) Yamaguchi, K.; Okumura, M.; Fueno, T.; Nakasuji, K. Synth. Met. 1991, 41-43, 3631-3634.
- (3) (a) Sugano, T.; Fukasawa, T.; Kinoshita, M. Synth. Met. 1991, 41–43, 3281–3284. (b) Sakurai H.; Izuoka A.; Sugawara T. J. Am. Chem. Soc. 2000, 122, 9723–9734.
- (4) Nakamura, Y.; Koga, N.; Iwamura, H. Chem. Lett. 1991, 69-72.
- (5) (a) Nakazaki, J.; Ishikawa, Y.; Izuoka, A.; Sugawara, T.; Kawada, Y. *Chem. Phys. Lett.* 2000, 319, 385-390. (b) Nakazaki, J.; Matsushita, M. M.; Izuoka, A.; Sugawara, T. *Tetrahedron Lett.* 1999, 40, 5027-5030. (c) Kumai, R.; Matsushita, M. M.; Izuoka, A.; Sugawara, T. J. Am. Chem. Soc. 1994, 116, 4523-4524. (d) Kumai, R.; Izuoka, A.; Sugawara, T. Mol. Cryst. Liq. Cryst. 1993, 232, 151-154.
- (6) (a) Sugimoto, T.; Yamaga, S.; Nakai, M.; Ohmori, K.; Tsuji, M.; Nakatsuji, H.; Fujita, H.; Yamauchi, J. *Chem. Lett.* **1993**, 1361–1364. (b) Sugimoto, T.; Yamaga, S.; Nakai, M.; Tsuji, M.; Nakatsuji, H.; Hosoito, N. *Chem. Lett.* **1993**, 1817–1820.
- (7) Nordio, P. L.; Soos, Z. G.; McConnell, H. M. Annu. Rev. Phys. Chem. 1966, 17, 237–260.
- (8) Izuoka, A.; Hiraishi, M.; Abe, T.; Sugawara, T.; Sato, K.; Takui, T. J. Am. Chem. Soc. 2000, 122, 3234–3235.
- (9) Okamoto, T.; Terada, E.; Kozaki, M.; Uchida, M.; Kikukawa, S.; Okada, K. Org. Lett. 2003, 5, 373–376.
- (10) Cauquis, G.; Delhomme, H.; Serve, D. Tetrahedron Lett. 1971, 4649-4652.
- (11) Crystallographic data for 1: monoclinic, space group C2/c, a = 37.16(1)Å, b = 6.127(2)Å, c = 24.091(9)Å, $\beta = 111.392(7)^{\circ}$, V = 5106.8(3)Å³, Z = 8, $\rho_{calcd} = 1.273$ g/cm³, T = 113 K, R = 0.070, $R_w = 0.088$, GOF = 1.142, Crystallographic data for 1⁺·CIO₄⁻⁻CH₂Cl₂, Triclinic, space group P-1, a = 10.282(1)Å, b = 11.232(1)Å, c = 15.539(2)Å, $\alpha = 80.70(1)$, $\beta = 77.67(1)^{\circ}$, $\gamma = 64.483(7)$, V = 1577.2(3)Å³, Z = 2, $\rho_{calcd} = 1.419$ g/cm³, T = 113 K, R = 0.045, $R_w = 0.065$, GOF = 0.988.
- (12) Caneschi, A.; Laugier, J.; Rey, P. J. Chem. Soc., Perkin Trans. 1 1987, 1077-1079.
- (13) Two additional short contacts were observed between atoms bearing smaller spin densities: One was between the neighboring dimers through the O2 and the C3-attached hydrogen (2.85 Å), resulting in a dimer chain in the [011] direction. The other was between the O2 atom and the C13-attached hydrogen (2.41 Å) of another neighboring 1⁺, giving a 1⁺ chain in the [010] direction.
- (14) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- (15) The $\chi_p T$ values in the high-temperature region (>100 K) were reproducible with $J_1/k_B \ge +700$ K. The unsatisfactory fitting of the low-temperature region (<50 K) may be due to the other contacts described in ref 13 being neglected. Trials with some accessible conventional models taking into account weaker contacts, i.e. a two-spin singlet-triplet model with a mean field (θ) or an S = 1 chain model did not improve the fitting.
- (16) Dihydrophenazine radical cation has nonalternant spin distribution, where both the nitrogen and the C2-carbon have large positive spin densities. See also Supporting Information.
- (17) The total energy E (hartree) and S² before spin projection were E = -1567.36685314 with S² = 2.0685 for triplet state, E = -1567.36369601 with S² = 1.0594 for the BS-singlet state using Gaussian 98, revision A.9; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pitsburgh, PA, 1998.
- (18) (a) Yamaguchi, K. Chem. Phys. Lett. 1975, 33, 330-335. (b) Noodleman, L. J. Chem. Phys. 1981, 74, 5737-5743. (c) Adao, C.; Barone, V.; Bencini, A.; Totti, F.; Ciofini, I. Inorg. Chem. 1999, 38, 1996-2004. (d) Okada, K.; Nagao, O.; Mori, H.; Kozaki, M.; Shiomi, D.; Sato, K.; Takui, T.; Kitagawa, Y.; Yamaguchi, K. Inorg. Chem. 2003, 42, 3221-3228.
- (19) Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem. 1999, 20, 1391–1400.
- (20) (a) Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1994, 231, 25–33. (b) Yamaguchi, K. Int. J. Quantum Chem. 2002, 90, 370–385.

JA0367748